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This progress report reports on: |- recent results of our feasibility demonstration of
cortically controlled neuroprostheses in rats, 2- results of a mathematical/statistical investigation
into methods for transforming the temporal patterning of cortical signals into a signal which
matches the actual motor output, 3- progress in developing a neuroprosthesis paradigm for the
monkey, 4- progress in developing a computer based real-time interface for neuroprostheses.

1- Neuroprosthetic Control from Forelimb Motor Cortex.

As briefly outlined in the previous two progress reports, we have implemented the plan
outlined in the original RFP proposal to verify feasibility of NP control of an
electromechanical arm in one dimension. In continuing investigations of this model, we
have prepared two additional rats (NP5 and NP6).

NP5: NP5 was the best animal so far, in terms of accuracy and speed of its behavioral
performance. Unfortunately, the quality and quantity of the single unit recordings was lacking, |
and so studies were carried out using multi-unit cluster recordings. Despite the relative “\
failure of this animal. therefore, two important findings were made: First, we successfully i
showed that a good flow of usable task-related multiunit cluster information can be extracted
from local areas of cortex when the electrodes are recorded differentially using a single
common reference electrode. Second, the multiunit cluster activity has less variability over (
time than do individual neurons. We are currently investigating whether it is possible to use \
statistical techniques to extract specific movement information from multiunit cluster
activity, and how the specificity of this information compares to that of single units.

NP6: We just implanted rat NP6 with two 16-electrode cortical recording arrays. One was
implanted in the rat cortical area 4 (primary motor cortex) and the other was implanted in
cortical area 6 (premotor cortex). Both of these areas have properties comparable to that in
primates, in that both produce discrete limb movements upon electrical stimulation, and both
contain neurons that discharge in relation to reaching movements of the forelimb. The
premotor cortex, however, may ultimately be more useful for neuroprostheses because it is
reportedly less strongly driven by somatosensory feedback than the primary motor cortex, and
may therefore retain more activity after a spinal cord lesion.

2- Transforming the temporal domain of cortical signals into movements:

One of the predictable problems that we have encountered is that task related motor
cortex neurons tend to discharge phasic bursts of activity just preceding and during the onset
of active limb movement. Thus, there is a mismatch between the temporal patterning of
cortical neural population activity vs. manipulandum displacement, which lasts longer. Asa
result, when we switch control of the robot arm away from the manipulandum and to the cortical
activity integrator, the robot arm moves with a much more rapid time course. An interesting
question, therefore, is how well cortical signals alone can (through appropriate mathematical
transforms) predict the eventual trajectory of forelimb movement. We have recently
completed a investigation into how well various statistical techniques can accomplish this
transform. We are already using principal components analysis (PCA) to transform (in the
purely spatial domain) the information from simultaneously recorded populations of neurons
into a smaller number of significant components, one of which tends to be uniquely well
mapped to the task-related activity. Therefore, rather than attempting to use data from the
original population of neurons to simultaneously transform in both the spatial and temporal



domains. we have applied various techniques to transform data from the first principal
component (PC1), which typically summarizes most of the population activity. A number
of mathematical approaches were used, including linear and nonlinear statistical functions,
and various neural networks. The efficacy of all techniques was tested by measuring the
correlation coefficient (R) between the transformed output function and the motor output signal
(MOVE) measured during one typical experimental period of about 250 sec. The results are
summarized below, and in figure 1, included here.

Regression functions: Regression is the generic statistical technique for matching one time
series to another. Linear regression produced only a slight advantage over PC1 itselt (R=.53 vs.
.51) in its prediction of the motor output. Use of PC1 vs. the original 32 neuron data set was
generally found to produce either the same, or better results. This was expected since PC1 had
an eigenvalue of 11.9. It thus explained 37% of the total signal variance in the 32 neuron set,
while separating out much of the remaining “noise” into other components. Next, nonlinear
regression experiments were conducted. This was necessitated by the apparent nonlinear
relationship between the PC1 and the motor signal. This was caused by the fact that the PC1
tended to lead the motor signal by up to several hundred msec. Thus, a simple approximation
of a temporal transformation could be achieved by first finding the appropriate nonlinear
function, and using it to derive a univariate regression equation. Both polynomial and
piecewise-linear (“breakpoint”) regression functions were derived. The piecewise-linear method
proved slightly better than the polynomial function, achieving correlations (R) with the
MOVE signal of .71 and .70 respectively. (When the piecewise linear method was allowed
to use the MOVE signal to provide the breakpoints, an R of .9 was obtained, but this method
would of course be unsuitable for a cortically controlled neuroprosthesis).

Tapped delay lines: A better way of using the temporal information embedded in the
cortical signal (here using PC1), isto create tapped delay lines, i.e. sets of differentially lagged
copies of the same signal, and then use them as variables in multivariate statistical
procedures. Multivariate regression, discriminant analysis and canonical correlation analysis
were used to derive transformation functions. All performed better than single nonlinear
regression functions, but those derived using canonical correlation were best, achieving a .76
correlation with the MOVE signal. Multiple nonlinear regression and discriminant analysis
were close, yielding R=.75 and .74 respectively. Discriminant functions were clumsy to use,
however, in that they required dividing the MOVE signal into a set of discrete set of grouping
variables. Without the tapped delay line, discriminant analysis fell apart, yielding an R=.28.

Neural Networks: We have also begun using neural network algorithms. The first one
involved a single input, 3-layer feedforward perceptron with back-propagation learning. This
network was essentially designed to find a single nonlinear regression function, but performed
that task less well than those discussed above (R=.57, vs. .7 for nonlinear regression). As is often
the case with neural networks, their theoretical superiority is compensated by the practical
problems of setting them up properly. On the other hand, when the tapped delay line was
used as input to the 3-layer feedforward perceptron, an excellent R=.77 was obtained. The best
results (R=.86) were obtained with a 3-layer recurrent perceptron. A sample of these results are
shown in the stripcharts in fig. 2. which show that the output of the neural network (“Predict
Bar™) was able to quite closely match the timing of the motor output function ("BAR™) after a



short period of learning (as measured by the decline of the error (“Cost”) function to near 0.0,
within about 50 sample periods. The recurrent network configuration is interesting in that it has a
more biologically realistic structure: its hidden layer neurons have recurrent projections to other
neurons in that layer. The nice (R=.86) result of using the recurrent network (using PC1 alone as
an input) was not improved by adding more principal components (PCs 1-4). Moreover, when
the raw data from the original 32 neurons was used instead of the PCs, the network fell apart and
could not learn. Our conclusion, therefore, is that the best general approach to using cortical
signals to reproduce actual movements will be use PCA to summarize the multi-neuron
information into a much smaller variable set, and then to use recurrent neural networks to
transform these generally phasic signals into longer duration signals which more closely
approximate real motor outputs. Of course such empirical approaches may well be replaced in
the future by models based on a sound understanding of how the motor system itself utilizes
cortical signals to produce movement.

3- Monkey Recordings.

Progress has been made in Dr. Nicolelis' lab at Duke University in setting up appropriate
experiments in the monkey. For the monkeys, we feel it is appropriate to set up a reaching task
which will eventually allow the animal to move a robot arm in three dimensions. For this Dr.
Nicolelis has obtained an tested a device which can be surface mounted on the monkey's arm
to supply a continuous readout of joint positions in 3-space. This will provide the signal for
forelimb directed movement of arobot arm from a water or food source to the monkeys
mouth. Progress on the technical side toward developing this paradigm is further discussed
below.

Meanwhile, more multi-neuron population recordings have been carried out in the
somatosensory and motor cortices of a third owl monkey. Following these, we have

submitted a manuscript (see enclosed) detailing the results of the first three monkeys.

Development of computer based real-time interface:

Following our initial proposal, Plexon Inc. (formerly Spectrum Scientific, Dallas, TX) has
made substantial progress in developing a Windows NT version of their multineuron ‘
acquisition system, which now works in the Windows 3.1 and 95 operating systems. (Such
systems are in place in the labs of Drs. Chapin, Nicolelis and Schwartz). Windows NT allows
one to multi-thread different simultaneous tasks through multiple Pentium Pro processors
on the same platform. After Plexon completes its NT version they will be able to provide
the real-time unit discrimination information to another task which will control output to a
motion device. Even though Windows NT is nota true real-time OS, it should work well
within the time constraints in this application. Currently, the plan for controlling the motion
devices is to utilize National Instrument's LabView-LabWindows package, which allows easy
graphical programming of IO devices, and any conceivable transformation between them.

Most of the available robotic systems interfaces provide drivers for control through LabView.
This plan provides the laboratory investigators maximal flexibility in their experimentation with
different schemes for transforming the cortical signals to motion system (of FNS) outputs.
When and if this experimentation successfully identifies optimal transformation algorithms.
they can be more compactly encoded into microelectronic systems with better real-time



response.




" TRANFORMING CORTICAL SIGNAL
TO MOTOR OUTPUT

INPUT METHOD Correlation (R)
Neuron 1 none 14
PC 1 none 91
Neurons 1-32 Linear Regression .53
PC1 Linear Regression .58
PC1 Polynomial Regression .70
PC1 Breakpoint Regression 71
PC1 Discriminant Analysis 28
PC1-TD* Canonical Correlation .76
PC1-TD* Linear Regression .68
PC1-TD* Polynomial Regression 75
PC1-TD* Discriminant Analysis 74
PC1 3-layer feedforward NN 57
PC1-TD” 3-layer feedforward NN T7
PC1 3-layer recurrent NN .86
PC1-4 3-layer recurrent NN .86

Neurons 1-32  3-layer recurrent NN —--

* Tapped delay line




Neural network prediction of BAR movement
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